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          In previous articles, statistical methods were 
presented which characterize data by a group mean 
and variance.      The physical  interpretation  of  this 
methodology is that the dependent variable has some 
average expected value (norm) and that deviations 
from the norm are due to random effects. Statistical 
methods were also discussed to compare two data 
sets and decide the likelihood that any differences 
were due to the random effects rather than system-
atic differences. 

              Some data have expected differences between 
two points. For example, it should surprise nobody 
that two children of different ages would have diffe- 
rent heights. Suppose we wish to examine the nature 
of the effect of one variable, such as age, on another 
variable, such as height. We are not attributing the 
differences in height to some unknown random effect, 
such as imprecision in the birthdate, but we are ex-
pecting a difference in the dependent variable height 
due to an expected effect of the independent variable 
age. 

             Analysis starts with the examination of a scat-
ter plot of the dependent variable on the y-axis and 
the independent variable on the x-axis. 

           Figure 1   is adapted from a scatter plot in 
the Wikimedia Commons (1). The data points are the 
blue dots. Each point represents a pair of indepen-
dent variable x value with its dependent variable y 
value. The red line is the regression line using slope 
intercept form:

 

               Every line can be defined by a slope (m) and 
y-intercept (b). Linear regression fits a “best” line to 
the set of data. What defines “best”? The most com-
mon method used to define “best” is the method of 
least squares. The “best” line is the line that minimiz-
es the sum of the squares of the difference between 
the observed values for y and the predicted values 
m*x + b. The squares of the differences are used so 
that deviations below the line do not cancel deviations 
above the line. The sum of the variances (S) between

         I am analyzing data from a height and age study for children under 10 years old. I am assuming 
that height and age have a linear relationship. Should I use a linear regression to analyze these data?
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 the predicted values and observed values can be ex-
pressed as:

         S is a function of the choices for both m and b. 
If a minimum value for a curve exists, the slope of the 
curve at that minimum is zero. The minimum value 
of S is determined by taking the derivative of S with 
respect to m and the derivative of S with respect to b 
and setting both expressions to zero. Note that during 
the calculation of the regression coefficients, the total 
variance is a function of the coefficients and the data 
values are treated as constants rather than variables.

Note that                              where n is the number of 

data points.

          This is a system of two equations with 2 un-
knowns, so a unique solution can be solved. The 
solution is usually shown in the following form:
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            The slope m is calculated first and is then 
used to calculate the intercept b. Note the symmetry 
in the formula for the slope m: both the numerator and 
denominator are the product of n and the sum of a 
product of individual values, minus the product of the 
sum of the first value and the sum of the second va-
lue. This form is common to all types of moment anal-
ysis. A complete discussion of moments is beyond the 
scope of this article.

Correlation

          How good is the fit between the observed 
data and the parameterized linear model? The usual 
approach to answering this question is known as the 
Pearson Correlation Coefficient r. The Pearson r is a 
moment analysis known as covariance. For the pop-
ulation Pearson correlation coefficient, the general 
formula for r is:

 

              where σ is the standard deviation of a variable. 
The Pearson r is usually calculated from the same 
intermediate values used to calculate the regression 
coefficients:

 .

           The Pearson r can have values from -1 to +1 
with a value of 0 meaning no correlation at all, a value 
of +1 meaning perfect fit to a positive slope line and 
a value of -1 meaning perfect fit to a negative slope 
line. The special case of a perfect fit to a horizontal 
line also has r = 0, but this is because the dependent 
variable does not vary at all. 
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Example

          Consider a simple set of 4 data points {(0, 1), 
(1, 3), (2, 5), (3, 7)}.
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  = 1 + 3 + 5 + 7 = 16.

∑
=

n

i
ix

1

2   = 0 + 1 + 4 + 9 = 14.
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  = 0 + 3 + 10 + 21 = 34. 

Slope m = [4 * 34 – 6 * 16] / [4 * 14 – 6 * 6] 
              = [136 – 96] / [56 – 36] = 40 /20 = 2.
Intercept b = [16 – 2 * 6] / 4 = [16 – 12] /4 = 4 / 4 = 1. 
The Pearson r = [4 *34 – 6 * 16] / √ [4 * 14 – 6 * 6] x
                           [4 * 84 – 16 * 16] 
                        = [136 – 96] / √ [56 – 36] [336 – 256]
                        = 40 / √ [20 * 80] = 40 / √ [1600] 
                        = 40 /40 = 1.
Thus, we see a perfect fit to a line with positive slope.

Adaptations of Linear Regression

      The main advantage of ordinary least squares 
is simplicity. The next advantage is that the math is 
well understood. This method can be easily adapted 
to non-linear functions. 

The exponential function: y = AeBx   can be adapted by 
taking the logarithm of both sides: ln (y) = ln (A) + Bx. 

          By transforming y’ = ln (y) one can fit ln (y) to A 
and B. This is, in effect, drawing the data on semi-log 
graph paper and fitting the best line to the graph. 

The power function: y = AxB  can be analyzed in the 
same way:   ln (y) = ln (A) + B ln (x).

             The graphical equivalence would be to plot the 
data on log-log paper and fit the best line to the result. 

          Multiple-regression adds parameters that need 
to be solved for best fit. Each new parameter adds 
an additional derivative expression that is set to zero 
and is part of a larger system of equations with the 
number of equations equal to the number of param-
eters. Generalized solutions of systems of equations 
are readily done with matrix notation that can be 
easily adapted to automated computing. This allows 
software packages to handle arbitrary numbers of pa-
rameters. An important caveat is that the parameters 
cannot be degenerate: that is parameters cannot be 
linear combinations of other parameters. 

        The method of ordinary least squares gives 
equal weight to all points based on the square of the 
deviation from best fit (variance). This method will tol-
erate small errors (residuals) in many points rather 
than larger errors (residuals) for a single point. Other 
best-fit models may work better for data sets where 
most points are good fits and a few points are outliers. 

       The generalized linear model method can be 
adapted to other types of data such as categorical 
data. The method of logistic regression will be pre-
sented in the next article.
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