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I am evaluating the sensitivity and specificity of an 

assay for COVID-19 diagnosis, and our team is devel-

oping a confusion matrix for this analysis. Could you 

explain the key considerations when using a confusion 

matrix for this purpose?

In biomedical research, particularly when evaluat-

ing diagnostic tests or predictive models, performance 

metrics are essential for assessing the effectiveness 

of assays or classification systems. One commonly 

used tool is a contingency table, which displays the 

frequency distribution of categorical variables. A con-

fusion matrix is a specialized form of a contingency 

table used to assess the performance of classification 

algorithms by showing the actual versus predicted 

outcomes. It is particularly useful for evaluating key 

metrics such as sensitivity, specificity, accuracy, and 

precision, which are crucial for interpreting the perfor-

mance of diagnostic tests.

1. The Confusion matrix

A confusion matrix is a specific type of two-dimen-

sional contingency table used to evaluate the perfor-

mance of a classification model. Its two dimensions, 

“actual” and “predicted,” represent identical sets of 

“classes” (e.g., disease positive and disease negative), 

allowing for a direct comparison between actual and 

predicted outcomes.
1,2

Specifically, in a confusion matrix, each row repre-

sents an actual class, while each column represents 

a predicted class (or vice versa). The diagonal cells 

represent correctly predicted outcomes, while the off- 

diagonal cells represent misclassifications. The matrix 

provides a clear visualization of where the model 

confuses different classes, which is why it is called a 

confusion matrix.

Table 1 provides an example of a confusion 

matrix, where the rows represent actual conditions, 

and the columns represent predicted conditions. The 

matrix contains four key components: True Positives 

(TP): The model predicts positive, and the actual con-

dition is positive; False Negatives (FN): The model 

predicts negative, but the actual condition is positive; 

False Positives (FP): The model predicts positive, but 

the actual condition is negative; True Negatives (TN): 

The model predicts negative, and the actual condition 

is negative. Furthermore, the sums of these compo-

nents define: Actual positive cases (P) = TP + FN; 

Actual negative cases (N) = FP + TN; Predicted posi-

tive cases (PP) = TP + FP; Predicted negative cases 

(PN) = FN + TN.

While the confusion matrix presents data in a 

straightforward manner, several important metrics can 

be derived from it to assess the performance of a diag-

nostic test or predictive model.

2. Key metrics derived from  

the confusion matrix

Commonly used metrics that can be derived from a 

confusion matrix include.
2,3

•	 Sensitivity (or True Positive Rate; TPR): The propor-

tion of actual positives that are correctly classified 

as positive, calculated as TP/P. A high sensitivity is 

particularly important in detecting diseases in which 

missing a positive case (FN) could have severe 

consequences. For example, in cancer screening, 

Table 1.   An Example Confusion Matrix

Predicted
Positive (PP) Negative (PN)

Actual Positive (P) True Positive 
(TP)

False Negative 
(FN)

Negative (N) False Positive 
(FP)

True Negative 
(TN)
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prioritizing high sensitivity is vital to ensure that as 

many true positive cases as possible are detected 

early, enabling timely treatment and improving the 

patient’s prognosis.

•	 Specificity (or True Negative Rate; TNR): The propor-

tion of actual negatives that are correctly classified 

as negative, calculated as TN/N. A high specificity is 

crucial in situations in which it is important to avoid 

classifying healthy individuals as diseased (FP). For 

example, in HIV testing, while both high sensitivity 

and high specificity are important, high specificity 

ensures that healthy individuals are not wrongly 

diagnosed as HIV-positive. This helps prevent the 

significant consequences of a false positive diagno-

sis, including unnecessary emotional stress, social 

stigma, discrimination, legal complications, and 

unwarranted medical interventions.

•	 False positive rate (FPR): Measures the likelihood of 

a false alarm (predicted positive) among those clas-

sified as negative, calculated as FP/N = 1-TN/N = 
1-specificity.

•	 Accuracy: The overall proportion of correctly classi-

fied instances is calculated as (TP + TN)/(P + N). 

While commonly used, accuracy can be misleading in 

the context of imbalanced datasets, in which the num-

ber of observations in different classes varies greatly. 

For example, imagine you are evaluating a diagnostic 

test for a disease that affects 1% of the population. 

In a sample of 1,000 individuals, only 10 (P = 10) 

people actually have the disease, while the remain-

ing 990 (N = 990) do not. The test predicts all 1,000 

individuals as negative, meaning it misses all the true 

positives but correctly identifies all the true negatives 

(Table 2). Therefore, accuracy can be calculated 

as: (TP + TN)/(P + T) = (0 + 990) / 1,000 = 99%. 

However, despite the high accuracy of 99%, the test 

is completely ineffective at identifying individuals with 

the disease (sensitivity = 0). In this case, the accu-

racy gives a false sense of the test’s effectiveness, as 

it is driven by the large number of true negatives in an 

imbalanced dataset. More appropriate metrics in this 

situation would be sensitivity or precision.

•	 False discovery rate (FDR): The FDR is the propor-

tion of false positives out of all predicted positives, 

calculated as FP / (TP + FP). While a lower FDR is 

generally desirable, a high FDR can sometimes be 

misleading.
4
 For example, consider a rare disease 

affecting 1% of the population. In a sample of 10,000 

individuals, only 100 (P = 100) actually have the dis-

ease, while 9,900 (N = 9,900) do not. Assume the 

test has a sensitivity of 90% and a specificity of 99%. 

This would result in: 90 true positives (90% of 100 

diseased individuals), 9,801 true negatives (99% of 

9,900 healthy individuals; Table 3). Though the test 

performs well in terms of sensitivity (90%) and spec-

ificity (99%), the FDR calculation reveals a different 

picture: FDR = FP / (TP + FP) = 99 / (90 + 99) ≈  

52.4%, meaning that over half of those who test 

positive are actually false positives. This high FDR 

is somehow misleading because, despite the test’s 

effectiveness (90% sensitivity and 99% specificity), 

the low prevalence of the disease (1%) makes false 

positives more noticeable. It is important to note 

that while the FDR appears high in low-prevalence 

populations, the test could still be valuable in high-

er-prevalence settings or when sensitivity is prior-

itized, such as in early screening. Nevertheless, in 

low-prevalence contexts, precision may be a better 

metric to assess alongside sensitivity and specificity.

•	 Precision (Positive Predictive Value): Proportion of 

predicted positives that are true positives and can 

be calculated as TP/PP, or equivalently, 1-FDR. 

Table 2.  An Example of an Imbalanced Dataset

Predicted
Positive (PP) Negative (PN)

Actual Positive (P) 0   10

Negative (N) 0 990

Table 3. � An Example of Test Results for a Rare (Low 
Prevalence) Disease

Predicted
Positive (PP) Negative (PN)

Actual Positive (P) 90 (100 × 90%) 10

Negative (N) 99 9,801 (9,900 
× 99%)
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This metric is particularly important when false posi-

tives can be costly. Precision answers the question, 

“Of all the individuals the test identified as positive, 

how many actually have the disease?” In low-preva-

lence settings, precision becomes especially crucial 

because false positives may outnumber true posi-

tives simply due to the low number of actual cases. 

Now, let’s revisit the previous example, and the pre-

cision would be Precision = TP / (TP + FP) = 90 / 

(90 + 99) ≈ 47.6%. This means that 47.6% of indi-

viduals who test positive actually have the disease. 

While this may seem low, it offers a clearer under-

standing than FDR regarding the usefulness of the 

test for identifying true positives. It is worth noting 

that by combining sensitivity, specificity, and preci-

sion, clinicians and researchers can better evaluate 

the likelihood that a positive test result accurately 

indicates the presence of disease. Particularly, 

in low-prevalence situations, precision is key for 

assessing the clinical utility of a positive test result, 

while sensitivity and specificity evaluate the overall 

accuracy and reliability of the test. Together, these 

metrics provide a comprehensive picture of test 

performance.

There are other metrics, such as the F1 Score, 

the Fowlkes-Mallows Index, and the Matthews Cor

relation Coefficient, etc.
5
 However, these will not be 

discussed in detail.

3. Applications in biomedical research

There are many applications of a confusion matrix 

in biomedical research:

•	 Diagnostic tests: The confusion matrix is often used 

to evaluate the performance of medical diagnostic 

tests for diagnosing diseases, helping assess how 

well tests distinguish between disease and non- 

disease cases.
6

•	 Predictive modeling: In areas like disease risk pre-

diction, confusion matrices are used to evaluate 

classifiers predicting outcomes such as heart dis-

ease, cancer, or other conditions.
7

•	 Imaging and segmentation: In medical image anal-

ysis (e.g., MRI scans, histopathology), confusion 

matrices are useful for evaluating algorithms that 

classify or segment regions of interest.
8,9

•	 Drug discovery and development: Models predict-

ing compound efficacy or toxicity are often evalu-

ated using confusion matrices to balance precision 

and sensitivity in identifying potentially harmful 

side effects.
10

•	 Genomics and proteomics: In genomics research, 

classifiers are often used to predict outcomes like 

gene expression profiles, locations of enhancers, or 

disease susceptibility based on high-dimensional 

biological data. Confusion matrices are critical in 

assessing the performance of these classifiers by 

breaking down their predictions into categories that 

help evaluate diagnostic or predictive accuracy.
11

4. Challenges in biomedical applications 

There are challenges in determining the best appli-

cation of a confusion matrix in biomedical research.

•	 Determination of actual positive and actual negative 

states:  For many conditions, a “gold standard” test 

for actual positive and actual negative states may 

not exist. For example, the diagnosis of pneumonia 

has no generally accepted inclusion and exclusion 

criteria. Acute respiratory distress syndrome (ARDS) 

is another example; even the definition of the acro-

nym ARDS has evolved over time by general con-

sensus. The basic definition is “bilateral pulmonary 

infiltrates on chest imaging, hypoxia, and exclusion 

of congestive heart failure.” All three points lack pre-

cise definitions with universally accepted thresholds. 

How much opacity is necessary on each side to 

consider an image to represent bilateral pulmonary 

infiltrates? What is the definition of hypoxia with an 

objective numeric threshold? It has been generally 

accepted that the pulmonary capillary wedge pres-

sure (PCWP) must be measured and be less than 

some threshold, but the actual threshold has evolved 

over time depending on whether the concern is how 

borderline cases are categorized. For many con-

ditions, an “expert” panel of opinion replaces an 

objective test until some objective test is considered 

good enough to become the new “gold standard.” 
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Once the new test becomes the “gold standard” how 

many false positive and false negatives were found 

in original studies? The “Light’s” criteria for catego-

rizing pleural effusion as transudate or exudate is an 

example of replacing one set of uncertainty with a 

new set of uncertainty.

•	 Imbalanced datasets: Many biomedical datasets 

exhibit significant imbalance, often containing 

fewer positive cases (e.g., rare diseases). In such 

scenarios, traditional accuracy metrics may be mis-

leading. It is crucial to emphasize the importance of 

alternative metrics such as precision and sensitiv-

ity to provide a more accurate evaluation of model 

performance.

•	 Cost of errors: The implications of false positives 

and false negatives can vary considerably from one 

study to another. For example, in cancer screen-

ing, false negatives (missed diagnoses) can have 

far more serious consequences than false positives 

(leading to unnecessary testing). A comprehensive 

understanding of these errors can greatly facilitate 

the decision-making process.

Additional challenges include threshold tuning 

and multi-class classification. These issues must be 

addressed with careful consideration of the specific dis-

eases or conditions being evaluated in clinical practice.

5. Confusion matrix and receiver 

operating characteristic (roc) curve

Both the confusion matrix and the ROC curve are 

essential tools for evaluating classifier performance, 

but they serve different purposes. The confusion matrix 

offers insights into performance at specific decision 

points, detailing metrics such as precision, sensitiv-

ity, and accuracy at a particular threshold. In contrast, 

the ROC curve plots sensitivity against the FPR (1– 

specificity), at various classification thresholds, which 

summarizes performance across all possible thresh-

olds, providing a broader perspective on how effec-

tively the classifier distinguishes between positive and 

negative classes.
12 

Importantly, both sensitivity and 

FPR used in ROCs can be derived from a confusion 

matrix. In this sense, the confusion matrix and the 

ROC curve complement each other in evaluating the 

performance of a diagnostic tool.

In summary, the confusion matrix is an important 

tool for evaluating diagnostic tests/tools performances, 

particularly in healthcare and biomedical research. 

While it provides straightforward metrics for assessing 

the performance of such tests/tools, the interpretation 

of these metrics can sometimes be misleading, espe-

cially in the context of rare diseases. Nevertheless, con-

fusion matrices are increasingly used in many areas of 

biomedical research including personalized medicine, 

explainable artificial intelligence modeling, etc.
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