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Editorial

Airborne dust: A primer for clinicians
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Dust is regulated in the United States under the 
Clean Air Act as part of PM10 (airborne particulate 
matter with a mean aerodynamic diameter smaller 
than 10 micrometers) and PM2.5 (airborne partic-
ulate matter with a mean aerodynamic diameter 
smaller than 2.5 micrometers). These are health-
based standards; PM10 can be inhaled sufficiently 
deeply into the human respiratory tract to cause 
adverse effects, and PM2.5 is small enough to reach 
deep into the lungs. In general, most dust particles 
fall into the “coarse fraction” (larger than PM2.5),1 but 
severe dust storms in West Texas have manifested 
both PM10 and PM2.5 concentrations more than an 
order of magnitude higher than EPA standards,2 and 
recent research shows that some dust is shattered 
into “ultrafine particles” (a fraction of a micrometer in 
diameter)3 which may be able to pass directly into the 
bloodstream. Actual concentrations of airborne dust 
are difficult to exactly quantify, as they ebb and flow 
with turbulent gusts and small-scale shifts of wind, but 
can be reasonably estimated. Measurement methods 
range from simple sediment traps-basically, contain-
ers set out in the air collecting dust as if it were precip-
itation in a rain gauge-to sophisticated optical sensors 
measuring aerosol scattering of a light beam, oscillat-
ing microbalances weighing specks of entrained air, 
and impactor and cyclone samplers pumping ambient 
air and collecting entrained particles through a filter 
or onto a plate. They all lose accuracy under heavy 
particulate loadings and/or high winds (i.e., dusty 
conditions) but seem to be reasonably precise as a 
standard of comparison.

Dust, and almost all atmospheric aerosols, are 
complex mixtures of materials; the reddish color of 
South Plains dust comes from iron and manganese 
oxides sandblasted off “rust-coated” silica grains.4 
The mineral component of dust is primarily quartz 
(SiO2, silica); crystalline silica in itself is a recog-
nized health hazard.5 Silicosis has long been identi-
fied as a respiratory disease, and the accompanying 
Regional Medicine Review article discusses “haboob 

The material which gave the “Dust Bowl” its name 
and blows through the Southwest is a geological 
and meteorological phenomenon now recognized to 
impact human health, especially through its respira-
tory effects. Indoor and occupational dust (generated 
inside buildings) possesses its own different sources, 
characteristics, and significant human health effects, 
representing a different material and topic, investi-
gated by environmental engineers and ventilation 
specialists rather than earth or atmospheric scientists. 
There is no clear scientific definition for (atmospheric) 
“dust”; in general, one may describe it as a coarse or 
large-sized aerosol (particle that is or was suspended 
in air, either by wind or mechanical forces), consisting 
of mineral matter or soil. 

Granulometrically, dust includes only particles 
smaller than 50 micrometers in diameter (silt-and sand-
sized grains); larger particles are classified by soil sci-
entists as sand. Realistically, in the Southwest, strong 
winds pay no attention to grain-size boundaries, so 
“dust storms” are also just as much “sand storms” and 
vice versa. Meteorologists differentiate “haze,” “blow-
ing dust,” “suspended dust,” and “dust storms” based 
on visibility, wind speed, and the duration of the event; 
these represent gradations of the same phenomenon, 
much as a tropical storm is differentiated from a hurri-
cane. Air quality researchers and environmental regu-
lators discern between “windblown” or “natural” dust, 
raised by atmospheric action generally from natural 
surfaces and thus a natural event, as opposed to “fugi-
tive” dust, emitted through human actions or human 
modification of the landscape, such as a truck driv-
ing down an unpaved road or a tractor plowing a field. 
However, human lungs and eyes cannot differentiate 
them on a hazy, windy West Texas day. 
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lung syndrome.”6 Additional components of mineral 
dust include other complex silicates, salts including 
sodium compounds from dry saline lakes, calcium car-
bonate (caliche), and calcium sulfate (gypsum), the 
aforementioned oxides and other naturally-occurring  
metal compounds, and rarely minerals which by 
themselves are cytotoxic, such as asbestos.7 Almost 
never is an aerosol completely mineral in nature; 
especially in urban or cropland regions, such as the 
Great Plains, natural mineral surfaces are coated 
with anthropogenic substances, such as motor 
vehicle or industrial emissions, soot from smoke, 
agricultural chemicals, and a myriad of biological 
substances, especially viruses, bacteria, and fungi. 
Winkler (1973) stated, “The same net composition 
of an aerosol can be caused by an infinite variety 
of different internal distributions of the various com-
pounds”;8 this clearly holds for dust aerosols, and 
must be kept in mind for its medical implications. 
Still, research has shown that in dry-climate cities, 
such as Lubbock, the atmospheric aerosol is pre-
dominantly mineral (i.e., dust) in composition, even 
on clear calm days.9 

Dust is typically not directly “lifted” or “suspended” 
by the wind (direct aerodynamic entrainment), other 
than in dust devils or vortexes. Instead, dust emission 
happens as aeolian forces exceed a threshold wind 

velocity and cause large sediment particles to creep 
along the ground and move in saltation, the wind-
driven hopping motion of sand grains. Saltating and 
creeping grains collide with the ground and each other, 
shattering, dislodging, crushing, spalling, and sand-
blasting off smaller, dust-sized pieces which become 
suspended and dispersed in the airstream (Figure 1). 

Any sufficiently strong wind over the right surface 
can cause dust emission, although climatological 
studies have revealed certain weather patterns most 
favorable for dust events.10-12 In the Southwest, these 
include dry, fast-moving fronts and drylines, cyclones, 
and the downdrafts from thunderstorms which produce 
haboobs, a menacing wall of dust blowing in as a dirty 
avalanche rolling over the land. In West Texas, fronts 
are the most frequent dust-producing weather, while 
cyclones, though rarer, produce the longest-lasting and 
highest concentrations of dust.10,11 In Arizona, thunder-
storm-spawned gusts and haboobs are predominant.13

The advent of weather satellites revolutionized 
our understanding of the sources and nature of dust 
events. Spaceborne sensors, such as TOMS (the 
Total Ozone Monitoring Spectrometer)14 and MODIS 
(the Moderate-resolution Imaging Spectroradiometer), 
have revealed that dust does not rise equally from 
throughout a semiarid landscape, but instead flows in 

Figure 1.  Illustration of the dust emission process, showing how saltation 
and creep of large grains release dust aerosols transported downwind. (After 
Dr. Robert Wallace, Ripon College: used with permission.)
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Figure 2.  One of the first known aircraft photos of a dust storm in the USA, eastern 
Colorado during the Dust Bowl, 1936. Note the emission of dust in linear plumes 
(from north to south: right to left on the picture) from a limited sector of the landscape, 
while surrounding areas are not blowing. (NOAA photo archives, public domain).

discrete plumes emanating from myriad small, intense 
point sources which spread out downwind and coa-
lesce into a broader shield.15 Certain geographical 
features, such as flat, dry, sandy plains and the des-
iccated, sand-ringed beds of salt lakes, have been 
quantified as disproportionally frequent initiation points 
of these plumes compared to other landforms.14,15 
Satellite tracking has also shown that dust clouds 
can traverse the globe. Although minimal in quan-
tity compared to locally-generated particulate matter, 
dust from the Sahara16 and Chinese deserts17 falls 
on West Texas, and Great Plains dust from the Dust 
Bowl may have been deposited on the Greenland ice 
cap.18 These new understandings of meteorological 
and geographic patterns favoring dust emission have 
vastly improved our ability to forecast dust events. 

Although quantitative measurements of dust con-
centrations in the USA have only been made since the 

implementation of national ambient air quality stand-
ards (NAAQS) in the 1970s, multiple lines of evidence 
suggest that the implementation of soil conservation 
measures and other agricultural improvements has 
reduced dust levels in the Plains since the Dust Bowl. 
The 1950s drought resulted in less wind erosion than 
the 1930s drought,19 and dust levels decreased signif-
icantly from the 1960s into the 21st century.20 

Compared to the 1930s Dust Bowl days, we now 
have a much greater scientific understanding of air-
borne dust, its causes, characteristics, controls, and 
effects, but many challenges remain. Even under 
ideal conditions, dust can be raised profusely from 
one localized part of the landscape while an equiva-
lent adjacent area remains dust-free; one agricultural 
field will blow a brownout, while the adjacent field will 
remain stable (Figure 2). Chaos-scale fluctuations of 
wind and soil probably have a role in this variability. 
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Equally, only in recent decades have human health 
hazards from dust been widely realized (see Reed 
and Nugent in this issue), yet they still are not sys-
tematically understood. Clinicians’ diligent aware-
ness and recognition of dust’s role in the cause and 
exacerbation of illness will improve our understanding 
of the epidemiology, etiology, and treatment of dust-
associated disease.
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