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Abstract

Acute decompensated heart failure is a clinical syndrome involving the congestion of vital 
organs, such as the kidneys, liver, and brain, leading to loss of autoregulation and multiorgan 
failure. The interaction between organ systems is bi-directional and complex; it cannot be 
explained by hypoperfusion alone. Despite the multiple signs and symptoms that arise with 
systemic congestion, there are limitations in the assessment of volume status based only on 
clinical evaluation. Invasive hemodynamic monitoring is an adjunctive diagnostic and prognostic 
tool in acute decompensated heart failure when standard therapy fails and/or leads to worsening 
renal function as well as for the evaluation of advanced therapy options. This review will discuss 
the use of temporary mechanical circulatory support devices in cardiogenic shock and the 
expected outcomes for advanced heart failure with the implementation of left ventricular assist 
devices and cardiac transplantation.
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Identifying end organ involvement in the 
systolic heart failure patient

Renal impairment

It is known that there is an interaction between 
renal function and the cardiovascular system. From 
a heart failure perspective in clinical practice, this is 
appreciated by initial renal function parameters meas-
ured in the serum of a patient and changes in these 
as medical therapy for heart failure is initiated. Thus, 
when a patient presents with decompensated heart 
failure and abnormal renal function, it is important to 

distinguish between underlying kidney disease and 
impaired kidney function precipitated by a collaps-
ing cardiovascular system. Ancillary testing that finds 
proteinuria, active urine sediment, hematuria, pyuria, 
or abnormal sized kidneys on radiologic studies usu-
ally suggests underlying kidney disease. 

Due to the concomitant presence of these dis-
eases the term cardiorenal syndrome (CRS) was ini-
tially used broadly for several decades until 2004 when 
a group of investigators at the National Heart, Lung, 
and Blood Institute defined the syndrome as a state in 
which therapy to relieve heart failure (HF) symptoms is 
limited by further worsening renal function.78 Although 
this seems to be the most common use of the term, 
some authors argue that it is inaccurate. In 2008, a new 
definition and classification were proposed by Ronco 
and colleagues; CRS was defined as a pathophysio-
logic disorder of the heart and kidneys in which acute 
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or chronic dysfunction of one organ may induce acute 
or chronic dysfunction of the other.79 The reduction in 
GFR was initially thought to result from a reduction in 
renal blood flow. However, the relationship between 
heart and kidney is bidirectional; the mechanisms caus-
ing CRS seem to be more complex than just reduction 
of blood flow and include activation of the sympathetic 
and  renin–angiotensin–aldosterone systems, altera-
tions in nitric oxide bioavailability, inflammation, and 
overproduction of reactive oxygen species.79 In these 
patients a urinary sodium (UNa) below 25 meq/L can 
occur and is related to activation of the renin-angio-
tensin-aldosterone and sympathetic nervous systems 
causing reduced renal perfusion and sodium retention. 
Heart failure is also a cause of prerenal azotemia, but 
evidence suggests that worsening renal function due 
to HF is not solely related to reduced cardiac output. 
It frequently occurs in patients with elevated right atrial 
pressures.80 Based on the complex heart-kidney inter-
actions and to emphasize the bidirectional nature of 
dysfunction in these organs, a new classification was 
created: 

1.	 Type 1 (acute): an abrupt worsening of car-
diac function leading to acute kidney injury (e.g., 
acute cardiogenic shock or decompensated HF). 

2.	 Type 2: chronic abnormalities in cardiac function 
(e.g., chronic HF) causing progressive chronic kid-
ney disease (CKD). 

3.	 Type 3: an abrupt worsening of renal function (e.g., 
AKI or glomerulonephritis) causing acute cardiac 
dysfunction (e.g., HF, arrhythmia, ischemia). 

4.	 Type 4: CKD (e.g., chronic glomerular disease) 
contributing to decreased cardiac function, cardiac 
hypertrophy, and/or increased risk of adverse car-
diovascular events. 

5.	 Type 5 (secondary): a systemic condition (e.g., sep-
sis) causing both cardiac and renal dysfunction.79 

Congestive hepatopathy 

Liver dysfunction also occurs in HF, and almost 
every condition that causes right-sided HF can result 
in hepatic passive congestion, secondary to elevated 
right ventricular pressures leading to increased central 

venous pressure (CVP) and liver reduced blood out-
flow.81 Hepatic congestion can be asymptomatic and 
detected only by abnormal liver tests found at rou-
tine laboratory analysis. In the onset of HF there are 
two forms of liver dysfunction: chronic congestion or 
volume retention, which is related to increased CVP 
and associated with total bilirubin elevation, and acute 
hepatocellular necrosis, which is caused by impaired 
perfusion and associated with elevation in serum ami-
notransferases as seen in patients with shock liver.82,83 
Thus cardio-hepatic syndrome (congestive hepato-
pathy) shows a predominant cholestatic enzyme 
pattern (bilirubin, alkaline phosphatase, and γ-glutamyl- 
transpeptidase); in acute HF, elevated aminotransam-
inases are characteristic.84

When evaluating hemodynamics, an upper safety 
limit of inferior vena cava (IVC) pressure is about 
27 cm H2O (20.5 mm Hg), which is already significantly 
elevated, and a pressure of 35 cm H2O (26.6 mm Hg) 
in the IVC is probably a critical level for maintaining 
liver viability.85

The increase in CVP eventually leads to atrophy 
of hepatocytes and perisinusoidal edema, impairing 
oxygen and nutrient diffusion.86 Cholestatic enzymes, 
but not aminotransaminases, are associated with sever-
ity and chronicity of HF, and with tricuspid regurgita-
tion severity.84,8 It has been demonstrated that right 
ventricular end-diastolic diameter, right atrial area, 
tricuspid regurgitation, TAPSE, portal vein pulsatility 
index, and left ventricular ejection fraction are signif-
icant predictors of total bilirubin elevation.88 

Allen et al. reported that a total bilirubin level 
above the upper limit level was a prognostic predictor 
of cardiovascular death, worsening heart failure, and 
all cause mortality. They concluded that total bilirubin 
in combination with other characteristics (blood count, 
basic metabolic panel, age, recent hospitalization, and 
New York Heart Association functional class) may pro-
vide an important estimation of overall risk of morbidity 
and mortality in patients with HF.89

Ultimately the clinical presentation of congestive  
hepatopathy consists in signs and symptoms of right- 
sided HF rather than those of liver disease.  Hepato‑ 
megaly is present in 95–99% of cases. A mild, dull, 
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right upper quadrant pain is caused by Glisson’s cap-
sule stretching. A pulsatile liver is the result of volume 
overload in the right atrium, and loss of such pulsatil-
ity implies a progression toward fibrosis or cirrhosis 
and deserves careful examination.90 Ascites may be 
present in up to 25% of the patients and is the result 
of right-sided HF and not from intrinsic liver dysfunc-
tion.83 As a result, liver abnormalities in an HF patient 
warrant additional testing to evaluate the morphology 
and liver synthetic function to distinguish between the 
presence of primary liver disease and/or its involve-
ment due to abnormal hemodynamics.

Heart failure-induced brain injury 

Recent data have demonstrated that cerebral 
blood flow (CBF) is compromised in HF, suggesting 
an association with CNS-related symptoms.91 Brain 
hypoperfusion is not only the result of low cardiac 
output, but cerebral autoregulation is also compro-
mised.92 Levels of carbon dioxide levels fluctuate 
in patients with acute and with chronic HF, being 
inversely related to left ventricular end-diastolic pres-
sures, causing constriction and dilatation of CNS blood 
vessels.93,94 Georgiadis et al. demonstrated that even 
though patients with HF had baseline flow-velocities 
comparable to those of normal controls, their response 
to the hypercapnic state (which normally causes vas-
odilation and increased flow) was blunted.92

Brain function abnormalities associated with HF 
include reduced psychomotor speed, learning and 
attention deficits, memory dysfunction, reduced execu-
tive function, and occasional language alterations.95,96 
Mechanisms proposed for these changes include a 
lack of collaterals and watershed phenomena in deep 
brain structures causing ischemic damage in hypoper-
fused conditions.97 

Another aspect that supports the brain injury sec-
ondary to heart failure is how cognitive function improves 
after LVAD implantation and cardiac transplantation.98,99 
Angiotensin-converting enzyme inhibitors seem to 
improve cognitive performance not only due to improved 
cardiac function but because angiotensin-converting 
enzyme is present in major cerebral arteries, causing 
an increase in cerebral perfusion.100,101 

Role for invasive hemodynamics 
measurements

Invasive hemodynamic monitoring with a pul-
monary artery catheter has a specific role in the 
management of heart failure. Its routine use is not 
recommended in normotensive patients with acute 
decompensated heart failure who respond to diuret-
ics and vasodilators. According to the 2013 ACC/AHA 
guidelines, right heart catheterization is indicated to 
guide therapy in patients with respiratory distress or 
clinical evidence of hypoperfusion when there is an 
unclear understanding of the hemodynamic state 
based on clinical evaluation (Class I, LOE C).18 It is 
also recommended in symptomatic patients who are 
refractory to standard treatment and who meet the fol-
lowing clinical scenarios: volume status is uncertain by 
clinical evaluation, persistent and clinically significant 
hypotension (symptomatic low blood pressure or SBP 
<90 mm Hg), use of parenteral vasoactive agents, 
and/or worsening renal function despite treatment. 
(Class IIa, LOE C). These recommendations are also 
in accordance with the 2016 ESC guidelines.10 In addi-
tion, invasive hemodynamic monitoring is required for 
the evaluation of advanced therapy options including 
mechanical circulatory support (MCS) or cardiac trans-
plantation (Class IIa, LOE C) and is the gold standard 
for the diagnosis and surveillance of pulmonary artery 
hypertension.18,102 

Right heart catheterization is an important tool in 
determining the etiology of shock and has a prognos-
tic utility in patients with heart failure.102 Hemodynamic 
parameters are used to tailor therapy in patients who 
require inotropic support. Despite its role in direct 
heart failure therapy in the intensive care unit, the 
Swan-Ganz catheter has not been associated with 
increased survival and has limitations, including an 
inability to use it in the outpatient setting and provide 
frequent measurements, operator dependent errors 
inherent to the procedure, and pressure variation with 
respiration.102 

The Evaluation Study of Congestive Heart Failure 
and Pulmonary Artery Catheterization Effectiveness 
(ESCAPE) trial in 2015 was a randomized con-
trolled trial of 433 patients designed to determine if 
pulmonary artery catheterization (PAC) is safe and 
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improves clinical outcomes in patients hospitalized 
with severe symptomatic and recurrent heart fail-
ure.103 The use of PAC did not affect the primary end 
point (days alive and out of the hospital during the first 
6 months), mortality, or the number of hospitaliza-
tion days. However, in-hospital adverse events were 
more common in the PAC group (p=0.04). No infor-
mation was provided on the use of PAC in cardiogenic 
shock as this patient population was excluded from 
the trial. The study results support the recommen-
dation that there is no indication for routine PAC use 
to adjust therapy for decompensated heart failure.103 
It is an opinion of the authors that it should be con-
sidered on a case by case scenario. Similar results 
were found in a meta-analysis of 13 RCTs (n=5051) 
that showed no changes in mortality or days of hos-
pitalization with the use of a PAC device in critically ill  
patients.104 

Strategies to prevent heart failure hospitaliza-
tions based on clinical assessment alone have not 
been successful. It has been established that hemo-
dynamic congestion occurs weeks before clinical 
congestion is evident.105 For this reason, the role of 
remote intracardiac and pulmonary artery pressure 
monitoring has been explored in an effort to decrease 
hospitalizations for heart failure.105 According to the 
ESC Practice Guidelines, remote hemodynamic mon-
itoring is recommended in patients with symptomatic 
heart failure and a recent heart failure hospitalization 
(class IIb recommendation).10 The Hemodynamic-
GUIDEd Management of Heart Failure (GUIDE-HF) 
trial is a prospective study at 140 sites who will enroll 
NYHA class II-IV patients with HF with an elevated 
BNP and/or prior HF hospitalization (HFH) to demon-
strate the effect of a pulmonary artery pressure sensor 
(CardioMEMS™ HF System) in HFH, intravenous diu-
retic visits and all-cause mortality.105 Ongoing clinical 
trials are required to determine which groups of heart 
failure patients will benefit from remote hemodynamic 
monitoring.

Temporary mechanical circulatory 
support in systolic heart failure 

There are approximately 6 million adults in the 
United States with congestive heart failure.106 The need 

for percutaneous ventricular assist devices (VAD) in 
acute decompensated heart failure has emerged with 
increased survival from myocardial infarction (MI) and 
heart failure. Timing of circulatory support is critical 
for improvements in survival.107 There is now a role 
for mechanical circulatory support initiated at earlier 
heart failure stages, prophylactically in high risk clin-
ical scenarios before shock progresses to end-organ 
dysfunction and even in some cases of cardiac arrest 
where spontaneous circulation cannot be achieved by 
other means.107 

Ventricular assist devices unload the ventricle, and 
thereby decrease myocardial oxygen consumption, 
and promote favorable remodeling, and maintain an 
adequate systemic pressure and cardiac output (CO) 
for organ perfusion.107 The following section discusses 
the use of the different forms of mechanical support, 
including intra-aortic balloon pump (IABP) and contin-
uous aortic flow augmentation (i.e., Impella). In addi-
tion, there is a section on extracorporeal membrane 
oxygenation (ECMO). 

Intra-aortic balloon pump

The IABP is the most commonly used hemody-
namic support device in the treatment of acute heart 
failure from MI.106 The IABP is inserted percutane-
ously via the femoral artery with the balloon placed 
in the proximal descending aorta. Inflation of the bal-
loon is synchronized with diastole producing diastolic 
aortic pressure augmentation that increases coronary 
artery pressure as well as mean arterial pressure and 
thus improves coronary, cerebral, and peripheral per-
fusion.106,107 Deflation then occurs before systole to 
lower aortic end-diastolic and systolic pressures with 
a resulting reduction in ventricular afterload and myo-
cardial oxygen consumption and improvement in car-
diac output (CO).106,107 

The Intra-Aortic Balloon Counterpulsation in Acute 
Myocardial Infarction Complicated by Cardiogenic 
Shock (IABP-SHOCK II) trial showed no mortality 
reduction of IABP compared with medical therapy in 
the setting of AMI complicated by cardiogenic shock 
(30-day mortality 39.7% with IABP vs. 41.3% with 
medical therapy, RR with IABP 0.96, 95% CI 0.79-1.17, 
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p=0.69).108 Moreover, Stretch et al. demonstrated that 
IABP prior to the use of contemporary mechanical 
circulatory support was a predictor of mortality and 
increased costs106,109 The intra-aortic balloon pump is 
considered a class IIa indication for use during STEMI 
complicated by cardiogenic shock according to the 
2013 ACC/AHA guidelines.106 

Impella

The Impella is a percutaneous VAD placed across 
the aortic valve that provides non-pulsatile blood flow 
by unloading the left ventricle (LV) and delivering blood 
to the ascending aorta through a trans-axial pump.106 
The device works in series with the LV to improve car-
diac output. Impella flow is continuous, independent 
of cardiac rhythm, and offers a different mechanism of 
circulatory support than the IABP.

Based on the study A Prospective Feasibility Trial 
Investigating the Use of IMPELLA RECOVER LP 2.5 
System in Patients Undergoing High Risk PCI (PROTECT 
I) trial and A Prospective, Randomized Clinical Trial of 
Hemodynamic Support With Impella 2.5 Versus Intra-
Aortic Balloon Pump in Patients Undergoing High-Risk 
Percutaneous Coronary Intervention (PROTECT II) trial, 
Impella 2.5 and Impella Cardiac Power are approved 
for use in hemodynamically stable patients undergo-
ing elective or urgent high risk PCI (HR-PCI).106,110 The 
PROTECT II study included 452 symptomatic patients 
with complex multivessel disease or unprotected left 
main disease and severely depressed LV function. The 
primary endpoint was a 30-day composite of 11 major 
adverse events. Results from PROTECT II trial showed 
that the 30-day incidence of major adverse events was 
not statistically different for patients with IABP or Impella 
2.5 (35.1% with Impella vs. 40.1% with IABP, p=0.227). 
However, a trend for decreased major adverse events 
was observed in patients with Impella 2.5 vs. IABP 
(40.6% versus 49.3%, P=0.066) in the intention-to-treat 
population at 90 days.106,110 Additionally, the catheter- 
based ventricular assist device (cVAD) registry is an 
observational, multicenter, retrospective registry of 
patients supported with Impella that suggests greater 
survival with pre-PCI Impella insertion compared with 
pre-PCI IABP and/or pharmacotherapy alone.106,111 
The use of Impella in PCI with cardiogenic shock and 

in cardiogenic shock with multiorgan failure is a class 
I indication according to the 2013 ACCF guidelines.106 

According to the U.S. Impella Registry, early cir-
culatory support (pre-PCI) improved hospital survival 
to discharge in acute MI complicated by cardiogenic 
shock (65.1% vs. 40.7%; p=0.003). Using hemody-
namic support at early stage permits more complex 
revascularization (p=0.003).107,112 Finally, The Use of 
Impella RP Support System in Patients With Right 
Heart Failure (RECOVER RIGHT) study performed to 
determine Impella RP safety and efficacy, showed a 
73% successful survival to either 30 days or to hospi-
tal discharge. The FDA has approved the Impella RP 
for patients with acute right heart failure or decom-
pensation after LVAD implantation, MI, heart trans-
plant, or open-heart surgery.106 

Veno Arterial Extracorporeal 
Membrane Oxygenation

Venoarterial Extracorporeal Membrane Oxy-
genation (VA-ECMO) is a mechanical cardiopulmo-
nary support used for acute cardiac failure or combined 
(cardiac and respiratory) failure; veno-venous ECMO 
is used when respiratory support is needed exclu-
sively.107 The VA-ECMO works by removing blood 
from venous system (RA or IVC) and returning it to 
the arterial side after gas exchange.

The Extracorporeal Life Support Organization 
(ELSO) registry reported 27% survival to hospital 
discharge with ECMO to support CPR in adults after 
cardiac arrest; the need for renal replacement ther-
apy increased mortality.113 More recent studies have 
shown 49% survival with either mechanical support 
devices or ECMO in cardiogenic shock. Prolonged 
CPR was a risk factor for increased mortality.113 There 
are no large randomized controlled trials on the use 
of ECMO. Guidelines recommend ECMO when con-
comitant hypoxemia and RV failure are present.106,107 

Device choice

Percutaneous VADs are used as a bridge to recov-
ery in patients with cardiogenic shock from potentially 
reversible causes and provide support in high risk 
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procedures that attempt to avoid cardiogenic shock 
precipitants106 They can also be used as a bridge to 
allow time for risks and benefit assessment for more 
definite treatments like LVAD or heart transplant, also 
considered bridge to candidacy.106 

The decision on the device selection should be 
individualized considering the severity of cardio-
genic shock from initial presentation, the degree of 
mechanical support needed in the setting of left, right 
or biventricular failure, and the presence of impaired 
pulmonary function. Several parameters, including 
circulatory support, ventricular support, and coronary 
perfusion, help patient selection.107 

The IABP increases coronary perfusion by dias-
tolic augmentation and provides afterload reduction. 
It offers less systemic support than other devices and 
depends on the electrical and mechanical function of 
the heart.107 The Impella does not affect afterload but 
decreases preload and increases CO and systemic 
pressures. According to Sodhi et al., the Impella is 
more effective than IABP in reducing LV-end diastolic 
pressure and equally effective in coronary perfusion in 
the setting of acute decompensated heart failure and 
shock.106 Last, ECMO is the most effective in increas-
ing CO as well as maintaining oxygenation and sys-
temic blood pressure. It is superior to IABP and Impella 
because it has the ability to provide independent left, 
right, and biventricular support at high blood flow rates 
and respiratory support if required.114 However, its 
effect is limited due to increased myocardial oxygen 
demand as ECMO has two opposing hemodynamic 
effects.106 When blood is removed from the venous 
system, preload decreases and there is a reduction in 
LV end-diastolic volume and pressure with subsequent 
reduction in wall stress and work. However, as blood 
returns to the arterial system, there is an increase in LV 
afterload which in turn causes higher myocardial oxy-
gen consumption and affects cardiac remodeling and 
recovery.106,115 For this reason, ECMO has been used 
concomitantly with other mechanical support devices 
for both preload reduction with Impella and afterload 
reduction with the IABP.107 Moazzami et al. showed 
that the Impella 2.5 serves to unload the LV reducing 
right atrial pressure, pulmonary capillary wedge pres-
sure, and LV end-diastolic pressure when used with 
ECMO.115,116 

While there are favorable hemodynamic effects 
associated with mechanical support, there is a lack 
of evidence that demonstrates a survival benefit of 
the Impella vs. medical therapy and IABP. Guidelines 
require randomized controlled trials that evaluate 
the benefit of hemodynamic support in cardiogenic 
shock. 

Expected outcomes and disposition

Is organ recovery a possibility?

The clinical course of heart failure is progressive 
but nonlinear, characterized by worsening quality of 
life despite increasing levels of care.117 Prognosis 
in advanced HF is grave, with a 1-year mortality in 
ambulatory class III–IV patients >25% and exceed-
ing 50% in class IV patients.118 However, a subset of 
patients with HFrEF shows improvement in EF with 
or without medical therapy. This cohort of cases, 
regarded as having heart failure with improved ejec-
tion fraction (HFiEF), has been shown to have 5-year 
survival rates of 80% to 90%, compared with 65% to 
75% in HFrEF patients.119

Patients with HFiEF share demographic and clin-
ical characteristics that are distinct from other classi-
fications of heart failure. Among patients with recent 
onset (<6 months) HFrEF, Givertz et al. documented 
rates of LVEF improvement (to LVEF >50%) of 
60–100% among patients with cardiomyopathy due to 
tachycardia, takotsubo syndrome, and hyperthyroid-
ism.120 Punnoose et al. compared patients with HFiEF 
and HFrEF and found that patients in the former cat-
egory were younger and less likely to have coronary 
disease compared with the latter, but rates of atrial 
fibrillation, hypertension, and diabetes were similar.3 
Genetic factors may also have a role in organ recov-
ery. Activating mutations in the angiotensin-converting 
enzyme (ACE) or β1-adrenergic receptor genes 
have been associated with refractoriness to medical 
therapy, whereas truncating mutations in the titin-A 
gene have a higher frequency of LVEF improvement 
(>10%).121,122 Other factors that have been shown 
to be associated with HFiEF include female sex, 
shorter duration of HF, and less severe adverse car-
diac remodeling at initial evaluation.123 However, it 
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is important to note that despite having improved or 
even normalized LVEF, these patients may continue 
to have clinical and biochemical evidence of func-
tional impairment.124

Advanced therapy options

Developments in advanced heart failure thera-
peutics in the form of cardiac transplantation and left 
ventricular assist devices (LVADs) have transformed 
the prospects for patients with advanced heart dis-
ease refractory to optimal medical therapy. The 1-year 
survival rate following heart transplantation is about 
90%, the 5-year rate is about 70%, but only about 
20% survive 20 years or longer.125 Quality of life after 
heart transplantation is also generally excellent and 
patients are frequently able to return to work, regard-
less of their profession.126 The leading cause of death 
after heart transplantation is malignancy, followed by 
coronary artery vasculopathy (CAV), then by graft 
failure. Acute rejection, which used to be one of the 
main causes of death, now has a low incidence due 
to current drugs.127 Despite its benefits, the process 
of transplanting a heart is drawn out and expensive, 
and many eligible patients simply never receive an 
organ due to the stagnating or decreasing number of 
suitable donors. 

Durable left ventricular assist devices (LVADs) 
have become the most commonly used surgical ther-
apy for advanced heart failure, and their use is now 
uncoupled from transplant candidacy.128 Historically 
LVADs were indicated only as a so-called bridge- 
to-transplantation (BTT) to ensure survival until a 
donor organ became available.129 Since publication of 
the Randomized Evaluation of Mechanical Assistance 
for the Treatment of Congestive Heart Failure 
(REMATCH) trial in 2001 that demonstrated improved 
survival in advanced HF patients ineligible for trans-
plantation treated with LVAD vs. optimal medical ther-
apy, LVADs have become increasingly approved as a 
more permanent ‘destination therapy’ (DT).128 With the 
advent of continuous flow devices, the 1-year survival 
of patients with LVADs is now in excess of 80%.130 The 
vast majority of modern LVADs are continuous-flow 
(CF) devices. These pumps may be either centrif-
ugal (HeartWare HVAD, Medtronic; HeartMate III, 

St. Jude Medical) or axial-flow (HeartMate II, St. Jude 
Medical). Modern LVADs are driven electrically via a 
percutaneous driveline connected to a portable con-
troller and external power source, typically batteries 
that are replaced every 4–18 h, and last >10 years.131 
Currently, >2500 pumps are implanted in the U.S. 
every year, and it is clear that a linear increase has 
taken place since 2006.132 Early referral for evaluation 
in an LVAD or transplant center is essential. Physicians 
should strongly consider patients who remain in NYHA 
III despite optimal medical therapy; other factors that 
may guide decision-making include inability to walk 
one block, hyponatremia, significant renal dysfunc-
tion, frequent HF admissions, or lack of response to 
CRT.133 

Role of Palliative Care

Involvement of palliative care early in the course 
of life-limiting chronic illness has been associated 
with fewer invasive procedures and interventions at 
the end of life, decreased length of stay, and shorter 
admissions to intensive care units.134 The WHO rec-
ommends that palliative care should be used “early in 
the course of illness, in conjunction with other thera-
pies that are intended to prolong life,” as it “improves 
the quality of life of patients and their families facing 
the problem associated with life-threatening illness, 
through the prevention and relief of suffering.135 A 
cross-sectional study comparing symptomatic HF and 
cancer patients reported that HF patients may bene-
fit from palliative care as much as cancer patients.136 
Nevertheless, a national survey of HF specialists in 
2004 found that 67% had not referred a single patient 
to palliative care in the 6 months prior to the sur-
vey.137 In a study of 600 patients who died from heart 
disease, 47% of family members said they did not 
receive adequate information about the disease and 
its progression, and 63% were unaware of the poor 
prognosis.138

Symptomatic management of heart failure 
includes loop diuretics to decrease dyspnea and 
improve exertional capacity and opioids to alleviate 
dyspnea and pain. Testosterone supplementation 
therapy has been shown to improve exercise capac-
ity, muscle strength, and peak oxygen consumption 
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in patients with advanced heart failure regard-
less of gender.139 It is important to screen patients 
for sleep-disordered breathing and depression, 
given their high prevalence among HF patients. 
Continuous ambulatory inotrope infusion should be 
considered for patients with dyspnea at rest despite 
maximal medical therapy.140 Medical devices such 
as permanent pacemakers and ICDs may no longer 
be indicated or desired by patients at end-of-life. 
About 20% of terminal heart failure patients with 
implantable cardioverter-defibrillators receive pain-
ful unnecessary shocks. Discontinuation of such 
therapies may actually improve quality of life for some  
patients.141 

Conclusions-Part 2

Advanced heart failure leads to end-organ dys-
function, such as the development of cardiorenal 
syndrome, congestive hepatopathy, and heart failure- 
induced brain injury. Decreased blood flow can only 
partially explain the effect of a failing heart in other 
vital organs. Understanding the pathophysiological 
mechanisms and organ-organ interactions is key to 
the management of acute decompensated heart fail-
ure. The routine use of invasive hemodynamic moni-
toring is not recommended in acute decompensated 
heart failure and has not been shown to improve clini-
cal outcomes. However, it has a utility in symptomatic 
patients who are refractory to standard treatment 
and most importantly those who are candidates for 
mechanical circulatory support or cardiac transplan-
tation. There is now a role for the early initiation of 
mechanical circulatory support before cardiogenic 
shock leads to end-organ dysfunction including the 
use of percutaneous VADs in the setting of acute heart 
failure from myocardial infarction and as a bridge to 
recovery or definitive treatments like LVAD or heart 
transplantation. These advanced therapy options 
have significantly changed survival and quality of life 
for patients with heart failure who do not respond to 
optimal medical therapy. The clinical outcomes asso-
ciated with these emerging therapeutic alternatives 
continue to be studied aiming to improve outcomes, 
and make these options available and recognizable 
by health care providers. 
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