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The Bayes’s rule

The fundamental basis of Bayesian analysis is the 
Bayes’s rule, which was first written by Thomas Bayes 
(1701–1761), to describe the relationship between 
marginal and conditional probabilities. Specifically, 

where A and B are events and P(B) ≠ 0. Also, P(A|B) is 
the conditional probability of event A occurring given 
that B is true, and P(B|A) is the probability of event B 
occurring given that A is true. P(A) and P(B) are the 
probabilities of observing A and B, respectively.

To make the interpretation of Bayes’s rule more 
intuitive, we will start with an example. As we know, 
diagnostic tests are almost never perfectly accu-
rate. A good test is supposed to have both high 
sensitivity (also called true positive rate; test result 
positive given disease present) and high specificity 
(also called true negative rate; test result negative 
given disease free). While sensitivity and specificity 
tell how good the test results are given the disease 
status, they do not directly tell the probability that a 
subject has the disease, given the test results. This 
is a situation where the Bayes’s rule can be applied. 
Specifically, let P(A) be the probability that a ran-
domly chosen subject has a specific disease in a 
specific population (disease prevalence), and P(B|A) 
be sensitivity of the test, and P(A|B), called positive 
predictive value, is the probability that subjects with 
a positive test result truly have the disease, which is 
what we are interested in. Note that P(B) is the prob-
ability of having a positive test result among subjects 
in this population, which equals to P(A)P(B|A) + P(Ac)
P(B|Ac), where P(Ac) = 1 - P(A) is the probability of 
being disease free among the subjects, and P(B|Ac) is  
1-specificity. 

Bayesian analysis is known to be able to 
incorporate prior information into decision making. 
This can be helpful when applied to clinical data 
analysis. I am wondering how Bayesian differs from 
the frequentist’s approach.

In a frequentist model, probability is the limit of the 
relative frequency of an event in repeated experiments. 
For example, the hospital mortality rate of patients with 
a certain disease can be estimated from observing 
the number of alive and expired patients at discharge, 
and in general, a p value and/or a confidence interval 
will be provided. While the conclusion made depends 
only on the data collected, which is objective, the often 
used significance level 0.05 is considered subjective. 
The frequentist model assumes that the model for the 
likelihood does not change over time. For example, 
a frequentist model of hospital mortality in COVID-
19 patients based only on the gender of the patient 
assumes that the population composition by age either 
does not affect outcome or is constant over time. 

As a comparison, in Bayesian statistics, “proba-
bility is orderly opinion, and that inference from data 
is nothing other than the revision of such opinion in 
the light of relevant new information.” In other words, 
the probability of an event in Bayesian analysis can 
be updated with the inclusion of additional informa-
tion, which is from data. This is possible because in 
Bayesian analysis all parameters in a model can be 
assumed to be random quantities instead of each 
parameter being a fixed value as in frequentist analy-
sis. To effectively perform Bayesian data analyses, it 
is critical to have a good understanding the Bayes’s 
rule (also called Bayes’s Theorem). 
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Therefore, 

Note that P(A) is the disease prevalence, prior 
to taking a diagnostic test, which can be determined 
from existing data or expert opinion. This probability 
can be updated/revised to P(A|B) after incorporating 
the test result into the calculation. 

Numerically, suppose that the sensitivity and 
specificity of a test are both 0.95, and assume that 
the prevalence for a disease is 30% for subjects 
50–60 years old, then the probability that a subject 
has the disease is 89% if tested positive. Meanwhile, 
assuming that the prevalence of the disease is 1% 
among subjects in their 20s, and then this probability 
becomes 16%. The prior information P(A) has a big 
role in Bayesian data analysis. 

Bayes’s rule can also be expressed in terms of 
probability distributions:

where f( ) is the prior distribution of the parameter , 
f(data| ) is the sampling density for the data, given the  
parameter , f(data) is the marginal distribution of the  
data, and f( |data) is the posterior distribution of 
the parameter . We will not present the details of 
how the posterior distribution is calculated–comparing 
with the likelihood function that the frequentists use, 
the incorporation of the prior distribution f( ) makes 
Bayesian analysis more computationally challenging. 

The prior distribution

It is critical to choose an appropriate prior distribu-
tion in a Bayesian analysis. If data from past studies/
experiments are available, then the prior distribution 
can be inferred from those. Other times, a prior can be 
determined more subjectively by experts in the field. If 
little is known about the parameter to be estimated, a 
non-informative prior is preferable.

Figure 1.  Jeffrey’s and uniform prior.
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Non-informative prior

As an attempt to avoid subjectivity, non-informa-
tive priors are often used, even when prior information/
opinion is available. For example, a standard uniform 
distribution can be used as the prior for the propor- 
tion  parameter of a binomial model. As we know, 
the probability density of any value in the range of 0 
to 1 is the same for a uniform distribution (Figure 1; 
horizontal line in red). However, although with equal 
probability for all these values, a uniform prior is not 
completely non-informative; for example, the mean 
of a standard uniform distribution is 0.5, which is 

( )~
( )

, informative. Jeffrey’s prior                           which is based 

on the Fisher information matrix, is more widely used 
as a non-informative prior (Figure 1; black curve). In 
most situations, the posterior distributions are quite 
similar when using either a uniform or a Jeffrey’s prior. 
However, under certain circumstances, the posterior 
distributions can differ substantially.

Suppose that we wanted to estimate in-hospital 
mortality rate at a regional hospital. Data from all the 
patients eligible for the study were collected, and the 
in-hospital mortality rate can be estimated by divid-
ing the number of patients expired at discharge by 
the total number of patients included. For example, 
if the total number of patients included in the study 
was n = 100, and k = 95 were alive at discharge, then 



76

Yang et al.	 Bayesian Data Analysis

The Southwest Respiratory and Critical Care Chronicles 2020;8(36):74–77

with a uniform prior f( ) = 1, the posterior distribution  
f( |data) ~ Beta(k + 1, n - k + 1). If a Jeffrey’s prior is 
used, then the posterior distribution is Beta(k + 0.5, 
n - k + 0.5). Note that if k is not too large or too small, 
then the means of the two posterior distributions are 
very close to each other. Numerically, the mortal-
ity rate estimates based on the frequentist’s method 
is 5%, and the posterior mean by using the uniform 
and the Jeffrey’s prior is 5.9% and 5.4%, respectively. 
However, if all 100 patients were alive at discharge, 
then the estimate based on the frequentist’s method is 
0%, and the posterior mean by using the uniform and 
the Jeffrey’s prior is 1% and 0.5%, respectively. Note 
that 1% is twice as large as 0.5%. 

Informative prior

Sometimes scientific information is available for 
determining the prior distribution. For example, the 
mortality rate of people with type I diabetes was 627 
per 100,000 person-years, with a 95% confidence 
interval of 532–728. The systolic blood pressure is 
123.5 ± 11.5 mm Hg during the day for certain healthy 
adults. If such information is available, it is preferable 
to use informative prior than a non-informative prior 
to gain better parameter estimations, especially for 
studies with a small sample size. On the other hand, 
an informative prior should be used with caution to 
avoid potential subjective bias. 

As has already been mentioned, due to the 
incorporation of prior distribution, the computation of 
Bayesian posterior distribution can be challenging. For 
this reason, conjugate priors are widely used in prac-
tice due to their appealing computational properties.

Conjugate prior

For some likelihood functions f(data| ), if the pos-
terior distributions f( |data) are in the same probability 
distribution family as the prior probability distribution 
f( ), the prior and posterior are then called conjugate 
distributions, and the prior is called a conjugate prior 
for the likelihood function. For example, a Beta dis-
tribution is a conjugate prior to Binomial likelihood. 
Because the posterior and the prior are in the same 
distribution family, the posterior will also be a Beta 

distribution. And based on well documented proof, 
the posterior distribution parameters can be obtained 
by simply adding the numbers of two potential out-
comes, e.g., alive and expired, to the existing param-
eters of the prior distribution, respectively. Therefore, 
the computation becomes very straightforward. Note 
that if the likelihood function belongs to the exponen-
tial family, then a non-trivial conjugate prior exists. 
This is a convenient fact, because exponential family 
of distributions are commonly used in data modeling.

In situations where conjugate priors are not avail-
able or a specific distribution is more suitable, then 
methods, such as Markov Chain Monte Carlo (MCMC) 
simulation can be used to approximate the posterior 
distribution. A number of platforms can be used for 
performing this analysis, including Stan (https://mc- 
stan.org/), and BUGS (http://www.openbugs.net/w/ 
FrontPage).

Bayesian hypothesis testing

In Bayesian, various summaries for the poste-
rior model parameters can be summarized, including 
point estimates, such as posterior means, medians, 
percentiles, and interval estimates known as cred-
ible intervals. There are also different approaches 
for hypothesis testing. For example, the maximum a 
posteriori (MAP) test compares the posterior proba-
bilities of two hypotheses and accepts the hypothesis 
with the higher posterior probability. As an alternative, 
Bayes’s factor, which can be interpreted as the weight 
of evidence provided by a set of data, is also widely 
used. In general, a Bayes’s factor between 1 and 3 is 
considered as weak evidence, between 3 and 20 as 
positive evidence, between 20 and 150 as strong evi-
dence, and greater than 150 as very strong evidence. 
We will not cover the details of these hypothesis test-
ing methods in this article.

In summary, Bayesian analysis is a method of 
statistical inference that combines prior information 
about a parameter with additional information from 
data to obtain an updated parameter distribution. Non-
informative priors are more often used than informa-
tive priors unless there is solid prior evidence on the 
distribution of the parameters of interest. Conjugate 
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priors are computationally appealing and thus widely 
used; otherwise, methods such as MCMC simulation 
are needed to approximate the posterior distribution. 
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