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Introduction

Chloroquine (CQ) and its analog, hydroxychloro-
quine (HCQ), are well-known drugs that have been 
used as antimalarial drugs for the last century. Their 
parent compound, quinine, was isolated from the 
bark of the cinchona tree in 1820 by French research-
ers Pierre Joseph Pelletier and Joseph Bienaimé 
Caventou. The earliest reported use dates back to the 
1630s in Peru when it is claimed that the Countess of 
Chinchon, from whom the tree’s name was derived, 
was treated with tree bark extract for an unknown 
febrile illness that was likely malaria. Around 1894, it 
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started to gain recognition for its benefit in rheumato-
logic and autoimmune diseases when Payne reported 
its effectiveness in treating cutaneous lupus.1 The 
alkaloids derived from the cinchona tree bark, includ-
ing CQ and other 4-aminoquinolines, started being 
investigated at the beginning of 1943 as a part of the 
antimalarial research program in the United States 
during World War II. Researchers also observed 
improvement in rashes and inflammatory joint pain in 
soldiers, and the first trial of this antimalarial drug as 
a treatment option for systemic lupus erythematosus 
was conducted.2 Since then, HCQ has been success-
fully used to treat rheumatologic syndromes (systemic 
lupus erythematosus,3 antiphospholipid antibody syn-
drome,4 rheumatoid arthritis,5 Sjogren’s syndrome6), 
infectious diseases (HIV, Q fever, Whipple’s disease, 
fungal infections), and multiple neoplasms (breast 
cancer, colon cancer, glioblastoma multiforme).7–11 
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This broad use pattern would suggest that at minimum 
these drugs are relatively safe.

Since the outbreak of novel severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) (COVID-
19), first reported in Wuhan, China, in December 2019, 
over 26 million people have been infected with over 
870,000 deaths as of September 3, 2020.12 COVID-19 
is an acute disease that can be severe and fatal if not 
timely managed. Severe COVID-19 disease is charac-
terized by extensive alveolar damage with acute hypox-
emic respiratory failure and death.13 Beginning in April 
2020, autopsy studies have provided important infor-
mation about this disease.14 Two extensive studies con-
ducted by Swiss and German researchers that included 
21 and 12 COVID patients, respectively, showed that 
the primary cause of death was respiratory failure with 
exudative alveolar damage, massive capillary conges-
tion with concomitant microthrombi despite anticoagu-
lation, and superimposed bronchopneumonia in almost 
half of the cases.15 A Phase II Clinical Trial to Evaluate 
the Recombinant Vaccine for COVID-19 (Adenovirus 
Vector) is being conducted by Chinese researchers; 
vaccines, of course, have the potential to prevent 
COVID-19 spread among healthy adults aged 18 years 
or older.16 However, no specific antiviral drug has been 
confirmed to be effective in treating COVID-19, and 
given the current circumstances, many existing drugs, 
including HCQ, are being considered for repurposing 
against Coronavirus 2. Scientific data accumulated 
over the years have highlighted antiviral properties that 
could be relevant in COVID-19 treatment. 

Historical development of 
hydroxychloroquine and its analogs

It is said that the Incas in Peru used the cinchona 
tree’s bark to cure the countess of Chinchon from 
a mysterious febrile illness in 1630.17 In 1891, Paul 
Ehrlich and colleagues demonstrated the uptake of 
the dye methylene blue by malarial parasites and later 
used that knowledge to replace the methyl group with 
a basic chain to develop pamaquine, a drug with anti-
malarial effects. Similar chemical modifications were 
made subsequently to produce compounds, such as 
chloroquine, quinacrine, sontoquine, and primaquine. 
Chloroquine, brand name Resochin, was used as 

an antimalarial drug at the beginning of 1943, during 
World War II, as a part of the extensive cooperative 
program of antimalarial research in the United States. 
Investigators also observed improvement in rashes 
and inflammatory joint pain in soldiers, and the first 
trial of antimalarial drug for the treatment of systemic 
lupus erythematosus (SLE) was conducted.2

General molecular mechanism of action

Chloroquine and hydroxychloroquine, in unpro-
tonated forms, generally act as weak bases that 
affect acidic enzyme containing vesicle organelles, 
leading to dysfunction. Upon entering the intracellu-
lar compartment of the vesicle organelles, such as 
endosomes, Golgi vesicles, and lysosomes, these 
drugs become protonated by following a Henderson-
Hasselbach reaction. This phenomenon increases the 
pH of the lysosomal and trans-Golgi network vesicles, 
leading to multiple effects, including the inhibition of 
post-translational modification of newly synthesized 
proteins, impairment of endosomal release of iron 
from ferrated transferrin, which leads to decreased 
intracellular iron concentration, and reduced DNA 
replication and gene expression. These drug effects 
are characteristic of lysosomotropic agents.18,19

Increases in the pH of the lysosomes and trans-
Golgi network by CQ and HCQ affect several cellular 
processes, including phagocytosis, exosome release, 
and phagolysosomal fusion. Prevention of phagolys-
osomal fusion leads to decreased antigen processing 
by antigen-presenting cells, such as plasmacytoid 
dendritic cells and B cells, thus causing failure of major 
histocompatibility complex (MHC) class II-mediated 
autoantigen presentation to T cells.20 As a result, T cell 
activation, differentiation, and production of co-stim-
ulatory proteins (e.g., CD154 on CD4+ T cells) and 
T cells and B cells cytokines are inhibited.21 In addi-
tion, HCQ also interrupts the binding between Toll-like 
receptors (TLR7 and TLR9) and their RNA/DNA lig-
ands and prevents the interaction between cytosolic 
DNA and the nucleic acid sensor cyclic GMP-AMP 
synthase, thus suppressing TLR signaling and sub-
sequent activation and production of the inflammatory 
cytokines IL-1, type I interferons, and TNF, also known 
as the STING pathway.22–24
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Antiviral mechanism of action

Chloroquine and hydroxychloroquine are multi-
functional drugs that, along with their antirheumatic 
and antineoplastic activity, also have diverse antiviral 
activity against both RNA and DNA viruses. They have 
broad-spectrum activity against enveloped viruses 
and prevent endosome mediated viral entry and 
post-translational modification. Usually, upon entering 
the target cells by endocytosis, some viruses enter 
the lysosome and release their infectious nucleic acid 
in the low pH environment. However, CQ and HCQ 
can inhibit the entry of these viruses by increasing the 
pH of the lysosome. For example, hepatitis A virus is 
affected by this mechanism as CQ and HCQ prevents 
its replication by inhibiting its uncoating.25

Chloroquine and hydroxychloroquine also prevent 
post-translational modifications such as glycosyla-
tion of some enveloped viruses within the endoplas-
mic and TGN vesicles. Since viral enzyme activity 
depends on maintaining low pH within the organelles, 
CQ and HCQ prevent their replication by inhibiting the 
activity of these enzymes through increases in the pH 
in these organelles.26 Prevention of glycosylation also 
leads to non-infectious viral particles and reduced 
total vital particle production that eventually reduces 
viral infectivity. This effect has been shown in studies 
with the avian reticuloendotheliosis virus REV-A and 
with HIV-1.27 Chloroquine and hydroxychloroquine 
also prevent the proteolytic processing of viral prM 
protein, which affects the viral replication cycle in a 
particular viral family called the Flaviviridae.28 

Chloroquine and hydroxychloroquine have shown 
promising antiviral activity in vitro against other RNA 
viruses, such as poliovirus,29 rabies virus,30 hepa-
titis C virus,31 influenza A and B viruses,32–35 influ-
enza A H5N1 virus,36 Chikungunya virus,37 Dengue 
virus,38 Zika virus,39 Lassa virus,40 Hendra and Nipah 
viruses,41–42 Ebola virus,43 Crimean–Congo hemor-
rhagic fever virus,44 and DNA viruses, such as herpes 
simplex virus45 and hepatitis B virus.46 However, in vivo 
clinical trials sometimes failed to produce satisfactory 
results perhaps secondary to the disease process, the 
concentration of chloroquine used, treatment duration, 
and time of drug administration.47

Immunomodulatory action

Intracellular accumulation of lysosomotropic weak 
bases, such as CQ and HCQ, especially in lymphocytes 
and macrophages, mediates the immunomodulatory 
effects that have led to their clinical use in inflammatory 
conditions, including rheumatoid arthritis, lupus erythe-
matosus, and sarcoidosis. Chloroquine and hydroxy-
chloroquine reduce the release of pro-inflammatory 
cytokines, specifically tumor necrosis factor-alpha 
(TNF-α), from human peripheral blood mononuclear 
cells and human whole blood in a dose-dependent 
fashion. Several mechanisms may contribute to this, 
including disruption of iron homeostasis, interruption 
of phospholipase A2 induced expression of TNFα, 
profound inhibition of prohormone processing of pro-
TNF-α to a mature form, and reduction in TNF-alpha 
mRNA expression by a non-lysosomotropic mech-
anism.48–51 Surface expression of TNF-alpha is also 
reduced by CQ and HCQ. These processes subse-
quently result in impairment of pro-inflammatory sig-
naling and mitigation of cytokine production, such as 
IL-1 and TNF, which have a significant role in cytokine 
storm syndrome that may be attenuated by CQ and 
HCQ. In summary, CQ and HCQ could limit the inflam-
matory response associated with this viral infection, but 
this effect could also limit the host defenses needed to 
clear the virus.

Antiviral action against 
coronavirus infection

Inhibition of post-translational glycosylation and 
the subsequent reduction of binding and fusion of 
SARS-CoV-1 to the host cell receptor angioten-
sin-converting enzyme 2 (ACE2) is an important anti-
viral effect of CQ and HCQ treatment in SARS-CoV-1 
infections. SARS-CoV-2 has been thought to utilize 
the same mechanism for cellular entry.52 Cleavage of 
Spike (S) protein in SARS-CoV-2 by CQ and HCQ in 
autophagosomes has also been reported.53 

The efficacy of CQ and HCQ in vitro against other 
respiratory viruses, like human coronavirus HCoV-O43 
and orthomyxoviruses, has been reported. Respiratory 
viruses like influenza virus and coronavirus enter cells 
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by binding to sialic acid-linked ganglioside receptors 
in the respiratory tract. Sialic acid ganglioside and 
glycoproteins have been observed as cell-surface 
attachment factors responsible for high transmissibil-
ity.54 In addition, the transmembrane serine protease 2 
(TMPRSS2) and extracellular matrix metalloproteinase 
inducer CD147, also called basigin, probably facilitate 
the entry of SARS-CoV into human cells. However, 
HCQ was found ineffective in blocking TMPRSS2.55,56  

Clinical trials on CQ/HCQ against 
SARS-CoV-2

Initially CQ and HCQ were considered for the 
treatment of COVID-19 based on preclinical in vitro 
data showing antiviral properties against SARS-
CoV-2, even though there were no reports of their use 
for prevention or treatment. 

Since March 2020, multiple clinical trials have been 
conducted to determine the efficacy of CQ and HCQ in 
treating COVID-19. Gautret et al. treated 20 patients 
in a non-randomized clinical trial with HCQ (200 mg 
three times a day for 10 days) or HCQ plus azithro-
mycin (AZM, 500 mg on day 1 followed by 250 mg/
day for the next 4 days) and did serial viral cultures on 
nasopharyngeal secretions.57 Seventy percent of the 
patients had negative viral studies by day six; 12.5% 
with patients in the untreated group had negative stud-
ies (P  = 0.001). These investigators suggested start-
ing HCQ treatment well before the patients develop 
Acute Respiratory Distress Syndrome (ARDS) asso-
ciated with cytokine storm.57 Huang et al. randomized 
22 patients into the 2 treatment arms.58 Ten patients 
received chloroquine phosphate, and 12 patients 
received lopinavir/ritonavir. All patients in the chlo-
roquine group became RT-PCR negative by day 14; 
11 of the patients on lopinavir/ritonavir became nega-
tive by day 14. The CT images improved faster in the 
patients on chloroquine phosphate, and these patients 
were discharged from the hospital earlier. Gao et al. 
reviewed ongoing trials in China with a chloroquine 
phosphate in February 2020.59 These trials included 
100 patients and demonstrated that chloroquine phos-
phate works better than control treatment in inhibiting 
“exacerbation of pneumonia,” improving lung imaging 
“findings,” promoting virus negative conversion, and 

shortening the disease course. Rana and Dulal sum-
marized trials using chloroquine in the treatment of 
COVID-19 from information available in various regis-
tries as of March 16, 2020. There were 21 trials listed, 
but no information was available on outcomes.60

A large retrospective study was done in the 
United States with 368 patients in Veterans Health 
Administration Medical Centers.61 These patients were 
followed over a period of 14 days with one group 
receiving HCQ or HCQ+AZM combination and the 
other group receiving conventional supportive care 
for COVID-19. This study focused on two primary out-
comes, namely mechanical ventilation requirement 
and death. At the end of the trial, the authors concluded 
that HCQ alone or in combination with AZM showed 
no benefit with a higher mortality rate in patients 
treated with HCQ alone (27.8%) and the combination 
of HCQ+AZM (22.1%) compared to the group receiv-
ing no drug treatment (11.4%).61 In April 2020, the use 
of optimal HCQ dose for SARS-CoV-2 was encour-
aged, which required a longer duration of treatment, 
along with administration of loading dose (800 mg 
twice a day for 1–2 days followed by 400 mg bid main-
tenance dose).62 A recent retrospective observational 
study with 2,541 patients from the Henry Ford Health 
System in Southeast Michigan reported that 13% of 
the cases treated with HCQ alone (1202 patients) 
resulted in fatality as opposed to a 26.4% fatality rate 
in cases not treated with hydroxychloroquine (409 
patients). Researchers noted a 66% hazard ratio 
reduction upon HCQ administration alone, and 71% 
with hydroxychloroquine plus azithromycin compared 
to treatment using neither drug (p < 0.001).63

Since these early reports on the use of either 
hydroxychloroquine or chloroquine were published, 
several randomized control trials have been com-
pleted. Boulware et al. conducted a randomized, dou-
ble blind, control-placebo controlled trial in the United 
States and Canada to determine whether hydroxy-
chloroquine can prevent symptomatic infection after 
SARS-CoV-2 exposure.64 Eight hundred twenty-one 
asymptomatic participants were enrolled and received 
either hydroxychloroquine for 5 days or placebo for 
5 days. Forty-nine of 414 participants (11.8%) receiving 
hydroxychloroquine and 58 of 404 participants (14.3%) 
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receiving placebo developed a new illness compatible 
with COVID-19. This difference was not significant. 
Mitja and co-investigators studied 293 non-hospital-
ized patients with mild to moderate COVID-19.65 These 
patients had symptoms for fewer than 5 days and were 
randomized to receive hydroxychloroquine for 6 days 
or no antiviral treatment. There was no significant dif-
ference in the mean viral load at baseline, at 3 days, 
or at 7 days between the 2 groups. Treatment did not 
reduce the risk of hospitalization, which was 7.1% in 
control patients and 5.9% in hydroxychloroquine treated 
patients. Finally, patients receiving hydroxychloroquine 
did not have a reduced time to complete resolution of 
symptoms. Cavalcanti et al. randomized 667 hospital-
ized patients to hydroxychloroquine for 7 days, hydrox-
ychloroquine and azithromycin for 7 days, or standard 
care.66 These patients were either on no supplemental 
oxygen or less than 4 L/min supplemental oxygen. The 
primary outcome was a symptom score at 15 days. 
There was no difference in outcomes among these 3 
groups. Pathak and colleagues performed a system-
atic review and meta-analysis of 7 studies reporting 
outcomes in COVID-19 patients treated with hydrox-
ychloroquine.67 This study population included 4,984 
patients. Approximately one-third received hydroxy-
chloroquine and two-thirds received standard care. 
The odds ratio for a favorable outcome with hydrox-
ychloroquine was 1.11 (95% CI: 0.72-1.69, P = 0.20). 
Consequently, this analysis indicated that hydroxychlo-
roquine has no benefit in patients with mild to moder-
ate COVID-19 disease. In summary, these randomized 
controlled trials demonstrated that hydroxychloroquine 
does not prevent symptomatic infection following expo-
sure and does not change the course of mild to mod-
erate COVID-19.

Adverse effects of hydroxychloroquine

Several studies have reported severe QT prolon-
gation and cardiac arrhythmias in patients treated with 
CQ/HCQ. A meta-analysis by Tleyjeh et al., including 
19 studies with 5,652 patients, reported two episodes 
of torsades de pointes in 2719 patients treated with 
CQ/HCQ. The pooled incidence of this meta-analysis 
reported torsades de pointes or cardiac arrest or 
ventricular tachycardia in 3 out of 1000 patients. QT 

prolongation from the baseline was estimated 7% 
from 12 studies of 2,008 patients.68 Garci-Cremades 
et al. explained the effect of high dose HCQ (>600 mg 
b.i.d for ≥ 5 days) on prolonging QTc value form base-
line.62 A study with 84 SARS-CoV-2 patients from New 
York University’s Langone Medical Center reported 
that 30% of the patients had their QTc increase by 
>40 ms, and 11% of patients had their QTc increased 
to >500 ms.69 However, a recent multi-center retro-
spective observational study from the Henry Ford 
Health System (HFHS) documented zero case of tor-
sades de pointes in the 2,132 patients treated with 
HCQ alone, HCQ+AZM, or AZM alone.63 

Chloroquine and hydroxychloroquine are asso-
ciated with other adverse effects, including vomiting 
and diarrhea.70 Hydroxychloroquine is associated with 
important neurological side effects, including muscular 
weakness, diplopia, dyskinesia, seizures, and myas-
thenic syndrome with short-term use. Psychiatric side 
effects include sleeplessness, agitation, psychosis, 
depression, anxiety, and aggressiveness; confusion 
has also been reported, starting within a few days after 
the beginning of treatment.71 Chloroquine has a worse 
safety profile than HCQ, as a one-time dose of 20 mg/
kg CQ can be toxic, and doses above 30 mg/kg CQ 
are considered fatal.72 A recent report also suggests 
that methemoglobinemia can occur in patients treated 
with COVID-19, including patients not having previous 
history of G6PD deficiency.73 Long term exposure can 
cause severe side effects, such as retinopathy, “bull’s 
eye” maculopathy, diametric defects in the retina, and 
cardiomyopathy.74 In contrast to CQ, HCQ has a lower 
level of tissue accumulation, which results in fewer 
adverse events. Chloroquine is contraindicated in 
pregnant patients due to its teratogenic effects, while 
HCQ is recommended for pregnant patients with auto-
immune diseases, such as SLE due to its capacity to 
prevent heart block.75 Based on the recent clinical data, 
in July 2020, the FDA issued a caution against CQ and 
HCQ’s being used to treat hospitalized patients.76

Conclusions

The global health crisis of the COVID-19 pandemic 
has made researchers consider repurposing old drugs, 
such as CQ, HCQ, AZM, lopinavir, and ritonavir. Current 
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literature describing the diverse mechanisms of action 
CQ and HCQ makes these drugs favorable candidates 
for pre- and post-infection use. However, several stud-
ies have reported no benefit with these drugs, and 
fatal adverse events with CQ and HCQ have resulted 
in the issuance of precautionary measures when rec-
ommending these drugs in COVID-19 patients. Larger 
randomized, dose determining, controlled clinical trials 
must be done before making any final recommenda-
tion for CQ and HCQ use in COVID-19. 
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